When we have got set of three dimensional points with coordinates X, Y and Z we can rotate it using usual equations for rotation around x, y and z axis separately. We can also transform three rotations by multiplication of it's matrices and rotate it at one take:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\alpha) & -\sin (\alpha) \\
0 & \sin (\alpha) & \cos (\alpha)
\end{array}\right] \times\left[\begin{array}{ccc}
\cos (\beta) & 0 & \sin (\beta) \\
0 & 1 & 0 \\
-\sin (\beta) & 0 & \cos (\beta)
\end{array}\right] \times\left[\begin{array}{ccc}
\cos (\gamma) & -\sin (\gamma) & 0 \\
\sin (\gamma) & \cos (\gamma) & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
\cos (\beta) \cos (\gamma) & -\cos (\beta) \sin (\gamma) & \sin (\beta) \\
\sin (\alpha) \sin (\beta) \cos (\gamma)+\cos (\alpha) \sin (\gamma) & -\sin (\alpha) \sin (\beta) \cos (\gamma)+\cos (\alpha) \cos (\gamma) & -\sin (\alpha) \cos (\beta) \\
-\cos (\alpha) \sin (\beta) \cos (\gamma)+\sin (\alpha) \sin (\gamma) & \cos (\alpha) \sin (\beta) \sin (\gamma)+\sin (\alpha) \cos (\gamma) & \cos (\alpha) \cos (\beta)
\end{array}\right]} \\
& X_{R}=X \cos (\beta) \cos (\gamma)-Y \cos (\beta) \sin (\gamma)+Z \sin (\beta)
\end{aligned}
$$

Last three lines are equations of point coordinates after complex rotation around three axis: x, y and z given by three angles: α, β and γ.
Since we've got points coordinates after rotation, we move the set of points along z axis by c.a. 400 units, and transform by equations of perspective. We will have set of two dimensional coordinates of points. For each surface we define four corners and we align a texture along it. There are four points named $P_{1}\left(x_{1} ; y_{1}\right), P_{2}\left(x_{2} ; y_{2}\right), P_{3}\left(x_{3} ; y_{3}\right)$ and $P_{4}\left(x_{4} ; y_{4}\right)$, with coordinates $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}, \mathrm{x}_{4}, \mathrm{y}_{4}$.
Another point $P_{12}\left(x_{12}, y_{12}\right)$ moves on the way from point P_{1} to point P_{2}. It moves by linear interpolation of it's coordinates between point P_{1} and P_{2} :

$$
\begin{aligned}
& x_{12}=x_{1}+y_{t}\left(x_{2}-x_{1}\right) \\
& y_{12}=y_{1}+y_{\mathrm{t}}\left(y_{2}-y_{1}\right)
\end{aligned}
$$

Exactly the same way moves point $\mathrm{P}_{34}\left(\mathrm{x}_{34} ; \mathrm{y}_{34}\right)$:

$$
\begin{aligned}
& x_{34}=x_{3}+y_{t}\left(x_{4}-x_{3}\right) \\
& y_{34}=y_{3}+y_{t}\left(y_{4}-y_{3}\right)
\end{aligned}
$$

x_{t} and y_{t} are indexes of proportion of width and height of a texture. Indexes range from 0 to 1.0 is left edge of a texture for index $x_{t}, 1$ is right edge, and 0 is top edge for y_{t} index and 1 for bottom edge. To scale it to a full size of texture multiplicate it by dimension of a texture. $1920 \mathrm{x}_{\mathrm{t}}$ and $1080 \mathrm{y}_{\mathrm{t}}$ are example for a texture of high definition format. Such multiplicated x_{t} and y_{t} are pixel coordinate on a texture, which has to be drawn in a position of a point $P_{1234}\left(\mathrm{x}_{1234} ; \mathrm{y}_{1234}\right)$ on a screen, which we drop our texture on. Point P_{1234} is linear interpolation of a position between previously interpolated points P_{12} and P_{34}. So, it's coordinates goes:

$$
\begin{aligned}
& \mathrm{x}_{1234}=\mathrm{x}_{12}+\mathrm{x}_{\mathrm{t}}\left(\mathrm{x}_{34}-\mathrm{x}_{12}\right) \\
& \mathrm{y}_{1234}=\mathrm{y}_{12}+\mathrm{x}_{\mathrm{t}}\left(\mathrm{y}_{34}-\mathrm{y}_{12}\right)
\end{aligned}
$$

which in basics is:

$$
\begin{aligned}
& \mathrm{x}_{1234}=\mathrm{x}_{1}+\mathrm{y}_{\mathrm{t}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)+\mathrm{x}_{\mathrm{t}}\left[\left(\mathrm{x}_{3}+\mathrm{y}_{\mathrm{t}}\left(\mathrm{x}_{4}-\mathrm{x}_{3}\right)\right)-\left(\mathrm{x}_{1}+\mathrm{y}_{\mathrm{t}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)\right)\right] \\
& y_{1234}=y_{1}+y_{t}\left(y_{2}-y_{1}\right)+x_{t}\left[\left(y_{3}+y_{t}\left(y_{4}-y_{3}\right)\right)-\left(y_{1}+y_{t}\left(y_{2}-y_{1}\right)\right)\right] \\
& \mathrm{x}_{1234}=\mathrm{x}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{1}+\mathrm{x}_{\mathrm{t}}\left[\left(\mathrm{x}_{3}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{4}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{3}\right)-\left(\mathrm{x}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{1}\right)\right] \\
& y_{1234}=y_{1}+y_{\mathrm{t}} \mathrm{y}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{1}+\mathrm{x}_{\mathrm{t}}\left[\left(\mathrm{y}_{3}+\mathrm{y}_{\mathrm{t}} \mathrm{y}_{4}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{3}\right)-\left(\mathrm{y}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{y}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{1}\right)\right] \\
& \mathrm{x}_{1234}=\mathrm{x}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{1}+\mathrm{x}_{\mathrm{t}}\left(\mathrm{x}_{3}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{4}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{3}-\mathrm{x}_{1}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{2}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{1}\right) \\
& \mathrm{y}_{1234}=\mathrm{y}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{y}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{1}+\mathrm{x}_{\mathrm{t}}\left(\mathrm{y}_{3}+\mathrm{y}_{\mathrm{t}} \mathrm{y}_{4}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{3}-\mathrm{y}_{1}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{2}+\mathrm{y}_{\mathrm{t}} \mathrm{y}_{1}\right) \\
& \mathrm{x}_{1234}=\mathrm{x}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{x}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{x}_{1}+\mathrm{x}_{\mathrm{t}} \mathrm{x}_{3}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{x}_{4}-\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{x}_{3}-\mathrm{x}_{\mathrm{t}} \mathrm{x}_{1}-\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{x}_{2}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{x}_{1} \\
& y_{1234}=y_{1}+y_{\mathrm{t}} \mathrm{y}_{2}-\mathrm{y}_{\mathrm{t}} \mathrm{y}_{1}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{3}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{y}_{4}-\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{y}_{3}-\mathrm{x}_{\mathrm{t}} \mathrm{y}_{1}-\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{y}_{2}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{y}_{1}
\end{aligned}
$$

It would be easy, when we would get position on a texture (coordinates x_{t} and y_{t}) having point on screen P_{1234} given. In such a case we wouldn't redraw some points of a texture, that overlap on the same pixel on a screen after mapping. We would have either no gaps in texture mapping, that could happen if distance of neighbouring pixels on texture would lay in distance bigger than one pixel on target screen after the mapping. To do that we transform equation to get x_{t} and y_{t} on a texture, of calculations for given x_{1234} and y_{1234}, belonging to target screen pixel coordinate. Then we could scan target screen with lines and columns to get texture position for each scanned point, with no overlapping or gaps.

We sort our equation for $\mathrm{x}_{\mathrm{t}}, \mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}$ and y_{t} :

$$
\begin{aligned}
x_{\mathrm{t}}\left(\mathrm{x}_{3}-\mathrm{x}_{1}\right)+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}\left(\mathrm{x}_{4}-\mathrm{x}_{3}-\mathrm{x}_{2}+\mathrm{x}_{1}\right)+y_{\mathrm{t}}\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)=\mathrm{x}_{1233}-\mathrm{x}_{1} \\
\mathrm{x}_{\mathrm{t}}\left(\mathrm{y}_{3}-\mathrm{y}_{1}\right)+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}}\left(\mathrm{y}_{4}-\mathrm{y}_{3}-\mathrm{y}_{2}+\mathrm{y}_{1}\right)+\mathrm{y}_{\mathrm{t}}\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)=\mathrm{y}_{12334}-\mathrm{y}_{1}
\end{aligned}
$$

let it happen, that:

$$
\begin{gathered}
\mathrm{a}_{1}=\mathrm{x}_{3}-\mathrm{x}_{1} \\
\mathrm{~b}_{1}=\mathrm{x}_{4}-\mathrm{x}_{3}-\mathrm{x}_{2}+\mathrm{x}_{1} \\
\mathrm{c}_{1}=\mathrm{x}_{2}-\mathrm{x}_{1} \\
\mathrm{~d}_{1}=\mathrm{x}_{1234}-\mathrm{x}_{1} \\
\mathrm{a}_{2}=\mathrm{y}_{3}-\mathrm{y}_{1} \\
\mathrm{~b}_{2}=\mathrm{y}_{4}-\mathrm{y}_{3}-\mathrm{y}_{2}+\mathrm{y}_{1} \\
\mathrm{c}_{2}=\mathrm{y}_{2}-\mathrm{y}_{1} \\
\mathrm{~d}_{2}=\mathrm{y}_{1234}-\mathrm{y}_{1}
\end{gathered}
$$

Now, the set of our two equations simplifies:

$$
\begin{aligned}
& x_{\mathrm{t}} \mathrm{a}_{1}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{~b}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{c}_{1}=\mathrm{d}_{1} \\
& \mathrm{x}_{\mathrm{t}} \mathrm{a}_{2}+\mathrm{x}_{\mathrm{t}} \mathrm{t}_{\mathrm{t}} \mathrm{~b}_{2}+\mathrm{y}_{\mathrm{t}} \mathrm{c}_{2}=\mathrm{d}_{2}
\end{aligned}
$$

to reduce number of variables we transform the first equation:

$$
\begin{gathered}
x_{t}\left(a_{1}+y_{t} b_{1}\right)+y_{t} c_{1}=d_{1} \\
x_{t}=\frac{d_{1}-y_{t} c_{1}}{a_{1}+y_{t} b_{1}}
\end{gathered}
$$

and by substituting x_{t} in second formula we're getting:

$$
\begin{gathered}
\frac{d_{1}-y_{t} c_{1}}{a_{1}+y_{t} b_{1}} a_{2}+\frac{d_{1}-y_{t} c_{1}}{a_{1}+y_{t} b_{1}} y_{t} b_{2}+y_{t} c_{2}=d_{2} \\
\frac{d_{1} a_{2}-y_{t} c_{1} a_{2}}{a_{1}+y_{t} b_{1}}+\frac{d_{1} y_{t} b_{2}-y_{t}^{2} c_{1} b_{2}}{a_{1}+y_{t} b_{1}}+\frac{a_{1} y_{t} c_{2}+y_{t}^{2} b_{1} c_{2}}{a_{1}+y_{t} b_{1}}=d_{2} \\
\frac{d_{1} a_{2}-y_{t} c_{1} a_{2}+d_{1} y_{t} b_{2}-y_{t}^{2} c_{1} b_{2}+a_{1} y_{t} c_{2}+y_{t}^{2} b_{1} c_{2}}{a_{1}+y_{t} b_{1}}=d_{2} \\
d_{1} a_{2}-y_{t} c_{1} a_{2}+d_{1} y_{t} b_{2}-y_{t}^{2} c_{1} b_{2}+a_{1} y_{t} c_{2}+y_{t}^{2} b_{1} c_{2}=d_{2}\left(a_{1}+y_{t} b_{1}\right) \\
d_{1} a_{2}-y_{t} c_{1} a_{2}+d_{1} y_{t} b_{2}-y_{t}^{2} c_{1} b_{2}+a_{1} y_{t} c_{2}+y_{t}^{2} b_{1} c_{2}=d_{2} a_{1}+y_{t} b_{1} d_{2}
\end{gathered}
$$

later, by sorting powers of y_{t}, we get simple quadratic equation:

$$
y_{t}^{2}\left(b_{1} c_{2}-c_{1} b_{2}\right)+y_{t}\left(a_{1} c_{2}-c_{1} a_{2}+d_{1} b_{2}-b_{1} d_{2}\right)+\left(d_{1} a_{2}-d_{2} a_{1}\right)=0
$$

of which we calculate delta and $y_{\mathrm{t}} \in\langle 0 ; 1\rangle$.

$$
\Delta=\left(\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{c}_{1} \mathrm{a}_{2}+\mathrm{d}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{~d}_{2}\right)^{2}-4\left(\mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{c}_{1} \mathrm{~b}_{2}\right)\left(\mathrm{d}_{1} \mathrm{a}_{2}-\mathrm{d}_{2} \mathrm{a}_{1}\right)
$$

usually it's the root with substracted delta, that falls in desired range:

$$
y_{t}=\frac{-a_{1} c_{2}+c_{1} a_{2}-d_{1} b_{2}+b_{1} d_{2}-\sqrt{\Delta}}{2\left(b_{1} c_{2}-c_{1} b_{2}\right)}
$$

if $b_{1} c_{2}-c_{1} b_{2}=0$, or y_{t} is given with equation:

$$
y_{t}=\frac{d_{2} a_{1}-d_{1} a_{2}}{a_{1} c_{2}-c_{1} a_{2}+d_{1} b_{2}-b_{1} d_{2}}
$$

If delta is less than zero we don't draw the point, and when y_{t} is outside $t h<0 ; 1>$ range we don't draw it either.

Calculating x_{t} of y_{t} may bring technical problems of division by zero in unexpected moments, so it is safer to proceed with above elaborate, transforming the second equation:

$$
x_{\mathrm{t}} \mathrm{a}_{2}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{~b}_{2}+\mathrm{y}_{\mathrm{t}} \mathrm{c}_{2}=\mathrm{d}_{2}
$$

into y_{t} :

$$
y_{t}=\frac{d_{2}-x_{t} a_{2}}{c_{2}+x_{t} b_{2}}
$$

when inserting into:

$$
x_{\mathrm{t}} \mathrm{a}_{1}+\mathrm{x}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}} \mathrm{~b}_{1}+\mathrm{y}_{\mathrm{t}} \mathrm{c}_{1}=\mathrm{d}_{1}
$$

we get:

$$
x_{t} a_{1}+x_{t} \frac{d_{2}-x_{t} a_{2}}{c_{2}+x_{t} b_{2}} b_{1}+\frac{d_{2}-x_{t} a_{2}}{c_{2}+x_{t} b_{2}} c_{1}=d_{1}
$$

and after transformation and reduction:

$$
\begin{gathered}
\frac{x_{t} a_{1} c_{2}+x_{t}^{2} a_{1} b_{2}}{c_{2}+x_{t} b_{2}}+\frac{x_{t} d_{2} b_{1}-x_{t}^{2} a_{2} b_{1}}{c_{2}+x_{t} b_{2}}+\frac{d_{2} c_{1}-x_{t} a_{2} c_{1}}{c_{2}+x_{t} b_{2}}=d_{1} \\
x_{2}+x_{t} b_{2} \\
x_{1} c_{2}+x_{t}^{2} a_{1} b_{2}+x_{t} d_{2} b_{1}-x_{t}^{2} a_{2} b_{1}+d_{2} c_{1}-x_{t} a_{2} c_{1} \\
x_{t} a_{1} c_{2}+x_{t}^{2} a_{1} b_{2}+x_{t} d_{2} b_{1}-x_{t}^{2} a_{2} b_{1}+d_{2} c_{1}-x_{t} a_{2} c_{1}=d_{1}\left(c_{2}+x_{t} b_{2}\right) \\
x_{t} a_{1} c_{2}+x_{t}^{2} a_{1} b_{2}+x_{t} d_{2} b_{1}-x_{t}^{2} a_{2} b_{1}+d_{2} c_{1}-x_{t} a_{2} c_{1}=d_{1} c_{2}+x_{t} d_{1} b_{2} \\
x_{t} a_{1} c_{2}+x_{t}^{2} a_{1} b_{2}+x_{t} d_{2} b_{1}-x_{t}^{2} a_{2} b_{1}+d_{2} c_{1}-x_{t} a_{2} c_{1}-d_{1} c_{2}-x_{t} d_{1} b_{2}=0 \\
x_{t}^{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)+x_{t}\left(a_{1} c_{2}-a_{2} c_{1}+d_{2} b_{1}-d_{1} b_{2}\right)+\left(d_{2} c_{1}-d_{1} c_{2}\right)=0
\end{gathered}
$$

of which we calculate delta and $\mathrm{x}_{\mathrm{t}} \in<0 ; 1>$:

$$
\Delta=\left(\mathrm{a}_{1} \mathrm{c}_{2}-\mathrm{c}_{1} \mathrm{a}_{2}+\mathrm{d}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{~d}_{2}\right)^{2}-4\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{a}_{2}\right)\left(\mathrm{d}_{2} \mathrm{c}_{1}-\mathrm{d}_{1} \mathrm{c}_{2}\right)
$$

$$
x_{t}=\frac{-a_{1} c_{2}+c_{1} a_{2}-d_{1} b_{2}+b_{1} d_{2}-\sqrt{\Delta}}{2\left(a_{1} b_{2}-a_{2} b_{1}\right)}
$$

If $a_{1} b_{2}-b_{1} a_{2}=0$, we use formula:

$$
x_{t}=\frac{d_{1} c_{2}-d_{2} c_{1}}{a_{1} c_{2}-c_{1} a_{2}+d_{1} b_{2}-b_{1} d_{2}}
$$

Since we've got x_{t} and y_{t} corresponding to x_{1234} and y_{1234} on target screen, we can draw a point in same colour that is the colour of a pixel x_{t}, y_{t} on texture, obviously after scaling x_{t} and y_{t} to dimensions of a texture by multiplication by texture's width and height.

Sharky's picture named Kieliszek from GFX compo on Polish Autumn 1993.

