

Quadratic Bezier curve is defined as a path of point moving along distance between two points, with double nesting, like on a picture. For $c=1$ each of moving points reaches destination. For $\mathrm{c}=0$ points remain in starting point. When each starting and ending point is defined by set of variables x_{1}, y_{1} and x_{2}, y_{2}, we can, by using proportion, find point on the way between start and the end. We just proportionally scale vector $x_{2} x_{1}$ attached at x_{1} :

$$
\begin{aligned}
& x_{c}=x_{1}+c\left(x_{2}-x_{1}\right) \\
& y_{c}=y_{1}+c\left(y_{2}-y_{1}\right)
\end{aligned}
$$

c is turning x_{c} from x_{1} into x_{2}. For $c=1 x_{c}$ equals $x_{1}+x_{2}-x_{1}$. While x_{1} reduces, x_{c} turns into x_{2}. For zero x_{c} equals x_{1}. Function of c is linear, we've got proportional and smooth change from x_{1} to x_{2}, as long as changes from 0 to 1 .
Using this rule for points on the path from G to H, H to I , I to J , we define points $\mathrm{O}_{1}, \mathrm{O}_{2}, \mathrm{O}_{3}$, using proportion written above, for each coordinate, according to formulas below:

$$
\begin{aligned}
& O_{1}=\left(x_{1}+c\left(x_{2}-x_{1}\right) ; y_{1}+c\left(y_{2}-y_{1}\right)\right) \\
& O_{2}=\left(x_{2}+c\left(x_{3}-x_{2}\right) ; y_{2}+c\left(y_{3}-y_{2}\right)\right) \\
& O_{3}=\left(x_{3}+c\left(x_{4}-x_{3}\right) ; y_{3}+c\left(y_{4}-y_{3}\right)\right)
\end{aligned}
$$

Then, along distances between these points another set of nested points slides. Let's name it P_{1} and P_{2}. Formulas for x and y of these points, use the same proportion as above, with coordinates of O points taken as a variables, instead of coordinates of G, H, I, J:

$$
\begin{aligned}
& P_{1}=\left(\left[x_{1}+c\left(x_{2}-x_{1}\right)\right]+c\left(\left[x_{2}+c\left(x_{3}-x_{2}\right)\right]-\left[x_{1}+c\left(x_{2}-x_{1}\right)\right]\right) ;\left[y_{1}+c\left(y_{2}-y_{1}\right)\right]+c\left(\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]-\left[y_{1}+c\left(y_{2}-y_{1}\right)\right)\right]\right) \\
& P_{2}=\left(\left[x_{2}+c\left(x_{3}-x_{2}\right)\right]+c\left(\left[x_{3}+c\left(x_{4}-x_{3}\right)\right]-\left[x_{2}+c\left(x_{3}-x_{2}\right)\right]\right) ;\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]+c\left(\left[y_{3}+c\left(y_{4}-y_{3}\right)\right]-\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]\right)\right)
\end{aligned}
$$

Finally, along path between P_{1} and P_{2}, slides final point B . Coordinates of this point are one more nesting in our equation of proportion. This time we use x and y of point P to create B :

[^0]Let's do the physical work and reduce this bulky equation a bit:

```
[\mp@subsup{x}{1}{}+c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})]+c([\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})]-[\mp@subsup{x}{1}{}+c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})])+c[[[\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})]+c([\mp@subsup{x}{3}{}+c(\mp@subsup{x}{4}{}-\mp@subsup{x}{3}{})]-[\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})])]-[[\mp@subsup{x}{1}{}+c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})]+c([\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})]-[\mp@subsup{x}{1}{}+c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})))]]
    \mp@subsup{x}{1}{}+c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})+c(\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})-\mp@subsup{x}{1}{}-c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{}))+c[\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})+c(\mp@subsup{x}{3}{}+c(\mp@subsup{x}{4}{}-\mp@subsup{x}{3}{})-\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{}))-\mp@subsup{x}{1}{}-c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{})-c(\mp@subsup{x}{2}{}+c(\mp@subsup{x}{3}{}-\mp@subsup{x}{2}{})-\mp@subsup{x}{1}{}+c(\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{}))]
    x}+c\mp@subsup{x}{2}{}-c\mp@subsup{x}{1}{}+c\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-c\mp@subsup{x}{1}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}+c[\mp@subsup{x}{2}{}+c\mp@subsup{x}{3}{}-c\mp@subsup{x}{2}{}+c\mp@subsup{x}{3}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{4}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}-c\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{x}{1}{}-c\mp@subsup{x}{2}{}+c\mp@subsup{x}{1}{}-c\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+c\mp@subsup{x}{1}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}
    \mp@subsup{x}{1}{}+c\mp@subsup{x}{2}{}-c\mp@subsup{x}{1}{}+c\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-c\mp@subsup{x}{1}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}+c\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{4}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{2}{}-c\mp@subsup{x}{1}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{1}{}
[x -c\mp@subsup{x}{1}{}-c\mp@subsup{x}{1}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}-c\mp@subsup{x}{1}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{1}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{1}{}]+[c\mp@subsup{x}{2}{}+c\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+c\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}-\mp@subsup{c}{}{2}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{2}{}+\mp@subsup{c}{}{3}\mp@subsup{x}{2}{}]+[\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}+\mp@subsup{c}{}{2}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{3}{}-\mp@subsup{c}{}{3}\mp@subsup{x}{3}{}]+[\mp@subsup{c}{}{3}\mp@subsup{x}{4}{}]
    \mp@subsup{x}{1}{}(1-3\textrm{c}+3\mp@subsup{\textrm{c}}{}{2}-\mp@subsup{c}{}{3})+\mp@subsup{x}{2}{}(3\textrm{c}-6\mp@subsup{\textrm{c}}{}{2}+3\mp@subsup{\textrm{c}}{}{3})+\mp@subsup{x}{3}{}(3\mp@subsup{\textrm{c}}{}{2}-3\mp@subsup{\textrm{c}}{}{3})+\mp@subsup{x}{4}{}\mp@subsup{c}{}{3}
    XB}=\mp@subsup{x}{1}{}(1-3\textrm{c}+3\mp@subsup{\textrm{c}}{}{2}-\mp@subsup{c}{}{3})+3\mp@subsup{\textrm{x}}{2}{}(c-2\mp@subsup{\textrm{c}}{}{2}+\mp@subsup{c}{}{3})+3\mp@subsup{\textrm{x}}{3}{}(\mp@subsup{c}{}{2}-\mp@subsup{c}{}{3})+\mp@subsup{x}{4}{}\mp@subsup{c}{}{3
    Y}=\mp@subsup{y}{1}{}(1-3\textrm{c}+3\mp@subsup{\textrm{c}}{}{2}-\mp@subsup{c}{}{3})+3\mp@subsup{\textrm{y}}{2}{}(c-2\mp@subsup{\textrm{c}}{}{2}+\mp@subsup{c}{}{3})+3\mp@subsup{\textrm{y}}{3}{}(\mp@subsup{c}{}{2}-\mp@subsup{c}{}{3})+\mp@subsup{y}{4}{}\mp@subsup{c}{}{3
```

Coordinates X_{B} and Y_{B} in function of c, varying from 0 to 1 draws quadratic Bezier curve. For lesser degrees, use points P as a entry point. To get further degrees of curves nest coordinates furthermore.

To develop velocity and acceleration of a curve use equations below:

$$
\begin{gathered}
\frac{\partial X_{B}}{\partial c}=3 \mathrm{x}_{1}\left(-1+2 \mathrm{c}-c^{2}\right)+3 \mathrm{x}_{2}\left(1-4 \mathrm{c}+3 \mathrm{c}^{2}\right)+3 \mathrm{x}_{3}\left(2 \mathrm{c}-3 \mathrm{c}^{2}\right)+3 \mathrm{x}_{4} c^{2} \\
\frac{\partial Y_{B}}{\partial c}=3 \mathrm{y}_{1}\left(-1+2 \mathrm{c}-c^{2}\right)+3 \mathrm{y}_{2}\left(1-4 \mathrm{c}+3 \mathrm{c}^{2}\right)+3 \mathrm{y}_{3}\left(2 \mathrm{c}-3 \mathrm{c}^{2}\right)+3 \mathrm{y}_{4} c^{2} \\
\frac{\partial^{2} X_{B}}{\partial c}=6 \mathrm{x}_{1}(1-c)+6 \mathrm{x}_{2}(-2+3 \mathrm{c})+6 \mathrm{x}_{3}(1-3 \mathrm{c})+6 \mathrm{x}_{4} c \\
\frac{\partial^{2} Y_{B}}{\partial c}=6 \mathrm{y}_{1}(1-c)+6 \mathrm{y}_{2}(-2+3 \mathrm{c})+6 \mathrm{y}_{3}(1-3 \mathrm{c})+6 \mathrm{y}_{4} c
\end{gathered}
$$

From equation of differential calculated for $\mathrm{c}=0$ and $\mathrm{c}=1$, we can get starting and final coordinates of vectors of "handles", that are usually used for drawing Bezier curve. Having equations of such, we can develop points H and I of a curve, for starting and ending points and lengths and directions of "handles".

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{S}}=-3 \mathrm{x}_{1}+3 \mathrm{x}_{2} \\
& \mathrm{Y}_{\mathrm{S}}=-3 \mathrm{y}_{1}+3 \mathrm{y}_{2} \\
& \mathrm{X}_{\mathrm{E}}=-3 \mathrm{x}_{3}+3 \mathrm{x}_{4} \\
& \mathrm{Y}_{\mathrm{E}}=-3 \mathrm{y}_{3}+3 \mathrm{y}_{4} \\
& \mathrm{x}_{2}=\left(\mathrm{X}_{\mathrm{S}}+3 \mathrm{x}_{1}\right) / 3 \\
& \mathrm{y}_{2}=\left(\mathrm{Y}_{\mathrm{S}}+3 \mathrm{y}_{1}\right) / 3 \\
& \mathrm{x}_{3}=\left(3 \mathrm{x}_{4}-\mathrm{X}_{\mathrm{E}}\right) / 3 \\
& \mathrm{y}_{3}=\left(3 \mathrm{y}_{4}-\mathrm{Y}_{\mathrm{E}}\right) / 3
\end{aligned}
$$

$x_{2}, y_{2}, x_{3}, y_{3}$ are missing points when points G and J are given with vectors curve velocity vectors $X_{S}, Y_{S}, X_{E}, Y_{E} . X_{S}$ and Y_{S} are coordinates of vector of velocity of Bezier curve at start point x_{1}, y_{1}.
X_{E} and Y_{E} are coordinates of vector of velocity of Bezier curve at end point $\mathrm{x}_{4}, \mathrm{y}_{4}$.
When all points are found, use formula for point B to draw quadratic Bezier curve.

[^0]: $B_{x}=\left[x_{1}+c\left(x_{2}-x_{1}\right)\right]+c\left(\left[x_{2}+c\left(x_{3}-x_{2}\right)\right]-\left[x_{1}+c\left(x_{2}-x_{1}\right)\right]\right)+c\left[\left[\left(x_{2}+c\left(x_{3}-x_{2}\right)\right]+c\left(\left[x_{3}+c\left(x_{4}-x_{3}\right)\right]-\left[x_{2}+c\left(x_{3}-x_{2}\right)\right]\right)\right]-\left[\left[x_{1}+c\left(x_{2}-x_{1}\right)\right]+c\left(\left[x_{2}+c\left(x_{3}-x_{2}\right)\right]-\left[x_{1}+c\left(x_{2}-x_{1}\right)\right]\right)\right]\right]$ $B_{y}=\left[y_{1}+c\left(y_{2}-y_{1}\right)\right]+c\left(\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]-\left[y_{1}+c\left(y_{2}-y_{1}\right)\right]\right)+c\left[\left[\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]+c\left(\left[y_{3}+c\left(y_{4}-y_{3}\right)\right]-\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]\right)\right]-\left[\left[y_{1}+c\left(y_{2}-y_{1}\right)\right]+c\left(\left[y_{2}+c\left(y_{3}-y_{2}\right)\right]-\left[y_{1}+c\left(y_{2}-y_{1}\right)\right]\right)\right]\right]$

