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To develop general approximation formulas we will start from usual approximation of measurements by a  
polynomial of the second degree:

f(x)=ax2+bx+c

In this particular example such function will be interpreted as function of three variables a, b and c, where x 
is constant:

F(a, b, c)=ax2+bx+c

There's  set  of  data  from tests  performed in lab,  pointing dependency of  physical  value y from x.  Data 
measurements are set of N pairs of xi and relating to it values of yi.

We lay the polynomial along measurements, so in moments x i difference between polynomial and measured 
value is:

Ψ(a, b, c) = yi-axi
2-bxi-c

To get more precise approximation we square the difference:

Ψ(a, b, c) = (yi-axi
2-bxi-c)2

and sum along all measurements from 1 to N:

F a ,b , c =∑
i=1

N

y i−ax
2−bx−c 2

This function tells how far the polynomial goes off the measurement points, for each set of parameters a, b 
and c. The exercise is to find such set of a, b and c, that maintains smallest possible value of F(a, b, c), what  
means smallest possible deviation error after exchanging tests with polynomial.

Typical examples for optimalisation says, that the function can have a minimum at points where derivative  
is zero and changes the sign. Let's calculate partial derivative of our function F(a, b, c) to find parameters a, b  
and c, where error will be minimal.

First, let's square the formula at the sigma:

Ψ(a, b, c) = (yi-axi
2-bxi-c)2=(yi-axi

2-bxi-c)(yi-axi
2-bxi-c)=

=yi
2-axi

2yi-bxiyi-cyi-axi
2yi+a2xi

4+abxi
3+acxi

2-bxiyi+abxi
3+b2xi

2+bcxi-cyi+acxi
2+bcxi+c2

Further, we calculate partial derivatives along a, b and c and match them to zero. Because derivative of sum  
is equal to sum of derivatives, we skip sigma now and proceed only on summed elements:

∂F a ,b ,c 
∂ a

= -xi
2yi  -xi

2yi +2axi
4 +bxi

3 +cxi
2 +bxi

3 +cxi
2 =

= 2axi
4 +2bxi

3 +2xi
2(c-yi) = 0

∂F a ,b ,c 
∂ b

= -xiyi +axi
3 -xiyi +axi

3 + 2bxi
2 + 2cxi =

= 2axi
3 +2bxi

2 +2xi(c-yi) = 0

∂F a ,b ,c 
∂ c

= -yi +axi
2 +bxi -yi +axi

2 +bxi +2c =

= 2axi
2 +2bxi -2yi +2c = 0



From now on, xn represents sum of measurements xi from i=1, …, N - where each reading is shifted to the 
power  of  n  before  the  summing.  The  same  do  y's.  By  arranging  partial  derivative  formulas  in  set  of 
equations, we get:

 2ax4 +2bx3 +2x2(c-y) = 0
2ax3 +2bx2 +2x(c-y) = 0
2ax2 +2bx -2y +2c = 0

 2ax4 +2bx3 +2x2(c-y) = 0
2ax3 +2bx2 +2x(c-y) = 0
2ax2 +2bx +2(c-y) = 0

 ax4 +bx3 +x2c = x2y
ax3 +bx2 +xc = xy

ax2 +bx +c = y

This set can be represented in form of matrix equation:

[x
4 x3 x2

x3 x2 x
x2 x N ]×[abc ]=[ x

2 y
xy
y ]

Vector of solutions is given after inverting matrix of powers:

[abc ]=[x
4 x3 x2

x3 x2 x
x2 x N ]

−1

×[ x2 yxyy ]
Quite similar one, for linear approximation looks like this:

[ab ]=[x
2 x
x N ]

−1

×[ xyy ]
Comparing with bigger form of matrix, one can develop general clue for approximation with polynomial of 
degree n:

[
an
an−1
⋮
a1
a0
]=[

x2n x2n−1 ⋯ xn

x2n−1 x2n−2 ⋯ xn−1

⋮ ⋮ ⋰ ⋮
xn1 xn ⋯ x
xn x n−1 ⋯ N

]
−1

×[ x
n y

xn−1 y
⋮
xy
y

]
It may seem not clear how c in last equation transformed into N. c simply means cx0, which is c times 1. Since 
we skipped sigma we have to recall that, we still count empty powers of x0. And this simply is because:

∑
i=1

N

xi
0=∑

i=1

N

1=N

Here goes the elaboration of symbols:



an , an−1 ,⋯, a1 , a0 - vector of polynomial coefficients solving the approximation; that's what we search 
for; generally measurement points are approximated with polynomial:

an x
nan−1 x

n−1⋯a1 xa0=0

x2n , x2n−1 ,⋯, x n ,⋯, x1 - sums of measurement points – the arguments in domain; for approximation 
by a polynomial of n-th degree there are sums of 2n power of each measurement required

xn≡∑
i=1

N

x i
n - each element of main matrix is sum of measurement moments altered to n-th power.

N - is the number of measurement points

xn y , xn−1 y ,⋯, xy , y - sums of particular powers of each measurement point multiplied by relevant 
measurement itself; simply multiplication of i.e. moment in time to n-th power, multiplied by a readout at  
that time, and all measurements are afterwards summed

xn y≡∑
i=1

N

xi
n y i -  each  of  elements  of  last  vector  means  sum  of  particular  measurement  moments, 

powered to n and multiplied by measured value. Sum is done along N measurement points.

A−1= 1
detA

⋅ADT -  finding  polynomial  factors  aims  on  calculating  inversion  of  main  matrix  of 

equation. To reach this solution, one has to perform five steps:
1. Separate all minors of the matrix by crossing row and column for each element of it in succession
2. Calculate determinant of each minor and multiply by a checkers pattern - −1i j to create matrix 

of algebraic complements; i is the number of row crossed-out and j is the number of crossed-out  
column; transposition of this matrix is not necessary, as it is symmetrical along the diagonal

3. Calculate  determinant  of  the  matrix  by  unwrapping it  along one of  rows or  columns;  multiply 
elements of one row or column by it's algebraic complements

4. Divide algebraically each of algebraic complements by the determinant within the matrix
5. Multiply the result by the last vector with measurement values ( xn y , xn−1 y ,⋯, xy , y )

What remains is  solution in form of the vector,  containing all  following coefficients of  polynomial  that  
approximate measurements the best possible way.

If above method of calculating solutions seemed to tedious, there's another one. Determinants' method. First  
one  has  to  calculate  main  determinant  of  a  matrix,  then  by  replacing  each  column  by 
xn y , xn−1 y ,⋯, xy , y , it is possible to find values of full set of parameters aligning the polynomial best  

way. In example for second degree polynomial:

W=det∣x
4 x3 x2

x3 x2 x
x 2 x N∣ W a=det∣x2 y x3 x2

xy x2 x
y x N∣ W b=det∣x

4 x2 y x2

x3 xy x
x2 y N∣ W c=det∣x

4 x3 x2 y
x3 x2 xy
x2 x y ∣

The solutions are: a=Wa/W, b=Wb/W, c=Wc/W



In general:

W=det∣ x
2n x2n−1 ⋯ xn

x2n−1 x2n−2 ⋯ xn−1

⋮ ⋮ ⋰ ⋮
xn1 xn ⋯ x
xn xn−1 ⋯ N

∣ W an=det∣ x
n y x2n−1 ⋯ xn

xn−1 y x2n−2 ⋯ xn−1

⋮ ⋮ ⋰ ⋮
xy x n ⋯ x
y xn−1 ⋯ N

∣
W an−1=det∣ x

2n xn y ⋯ xn

x2n−1 xn−1 y ⋯ xn−1

⋮ ⋮ ⋰ ⋮
xn1 xy ⋯ x
xn y ⋯ N

∣ W a0=det∣ x
2n x2n−1 ⋯ xn y

x2n−1 x 2n−2 ⋯ xn−1 y
⋮ ⋮ ⋰ ⋮
xn1 xn ⋯ xy
xn xn−1 ⋯ y

∣
The same way here: an=Wan/W, an-1=Wan-1/W, … , a0=Wa0/W

EXAMPLE:

We will approximate 5 measurements with polynomial of fourth degree.

This is measurement chart:

x -0.4 -0.2 0 0.4 0.8

y -0.17 -0.8 -1 -0.17 2.61

The approximating polynomial is: ax4+bx3+cx2+dx+e=0

Let's add necessary powers to the list x2-x8 are second to eight powers of each measurement.
Powers of measurements vector are also added.

n=5 1 2 3 4 5 Σ

x -0.4 -0.2 0 0.4 0.8 0.6

y -0.17 -0.8 -1 -0.17 2.61 0.46

x2 0.1600000000 0.0400000000 0.0000000000 0.1600000000 0.6400000000 1.0000000000

x3 -0.0640000000 -0.0080000000 0.0000000000 0.0640000000 0.5120000000 0.5040000000

x4 0.0256000000 0.0016000000 0.0000000000 0.0256000000 0.4096000000 0.4624000000

x5 -0.0102400000 -0.0003200000 0.0000000000 0.0102400000 0.3276800000 0.3273600000

x6 0.0040960000 0.0000640000 0.0000000000 0.0040960000 0.2621440000 0.2704000000

x7 -0.0016384000 -0.0000128000 0.0000000000 0.0016384000 0.2097152000 0.2097024000

x8 0.0006553600 0.0000025600 0.0000000000 0.0006553600 0.1677721600 0.1690854400

x4y -0.0044646400 -0.0012774400 0.0000000000 -0.0044646400 1.0688921600 1.0586854400

x3y 0.0111616000 0.0063872000 0.0000000000 -0.0111616000 1.3361152000 1.3425024000

x2y -0.0279040000 -0.0319360000 0.0000000000 -0.0279040000 1.6701440000 1.5824000000

xy 0.0697600000 0.1596800000 0.0000000000 -0.0697600000 2.0876800000 2.2473600000



Here's the matrix with written values from sigma column in measurement charts:

0.1690854 0.2097024 0.2704000 0.3273600 0.4624000

0.2097024 0.2704000 0.3273600 0.4624000 0.5040000

0.2704000 0.3273600 0.4624000 0.5040000 1.0000000

0.3273600 0.4624000 0.5040000 1.0000000 0.6000000

0.4624000 0.5040000 1.0000000 0.6000000 5.0000000

And here is the matrix inverted:

3607.856  -2506.51 -821.398 368.49   39.063

-2506.51  1837.023 514.974  -274.392  -23.438

-821.398  514.974  229.08   -77.188  -12.5

368.49   -274.392 -77.188  43.903   3.75

39.063  -23.438  -12.5   3.75     1

Now it is enough to multiply this inverted matrix by a vector xn y , xn−1 y ,⋯, xy , y , and here's the result:
 

a 1.00

b 0.00

c 4.99

d 0.00

e -1.00

Approximated polynomial is: f(x)=x4+4.99x2-1

By  inserting  measurements  points  into  found  function,  we  receive  former  values.  This  is  prove  for 
correctness of calculations:

f(-0.4)=-0.44+4.99(-0.4)2-1=0.0256+0.8-1=-0.17

f(0)=0+0-1=-1


